

HISTOART: Develop an AI-Based Concept Art Generator for Local Heritage Stories
Abstract
HISTOART is a project that generates concept art from text descriptions related to local histories and heritage. Using the FAL AI text-to-image API, it transforms cultural narratives—like folk tales or traditional rituals—into unique images. Built with HTML, CSS, and JavaScript, the user-friendly interface offers prompt templates, real-time generation, and customization options. The secure backend ensures smooth API integration. Aimed at educators, artists, and heritage enthusiasts, the tool promotes cultural preservation and creative storytelling. Future enhancements include multilingual support, regional style transfer, and community content contributions.
References
N. H. Jboor, A. Bouras, and A. Al-Ali, "Generative Adversarial Networks Based Reconstruction and Restoration of Cultural Heritage," Qatar University Institutional Repository, 2020. [Online]. DOI:https://qspace.qu.edu.qa/handle/10576/ 16196(qspace.qu.edu.qa)
A. Belhi, T. Abu-Musa, A. K. Al-Ali, A. Bouras, S. Foufou, X. Yu, and H. Zhang, "Digital Heritage Enrichment through Artificial Intelligence and Semantic Web Technologies," in Proc. 4th Int. Conf. on Communication and Information Systems (ICCIS), 2019, pp. 180–185. [Online].
DOI:https://www.researchgate.net/publicatio n/343308400_Digital_Heritage_Enrichment
_through_Artificial_Intelligence_and_Sema nticWeb_Technologies(researchgate.net)
S. Tiribelli, S. Pansoni, E. Frontoni, and
B. Giovanola, "Ethics of Artificial Intelligence for Cultural Heritage: Opportunities and Challenges," IEEE Trans. Technol. Soc., vol. 5, no. 2, 2024. [Online]. DOI:https://www.researchgate.net/publicatio n/384128175_Ethics_of_Artificial_Intellige nce_for_Cultural_Heritage_Opportunities_a nd_Challenges(researchgate.net)
P. Jaramillo and I. Sipiran, "Cultural Heritage 3D Reconstruction with Diffusion Networks," arXiv preprint arXiv:2410.10927, 2024. [Online].
DOI: https://arxiv.org/abs/2410.10927
Y. Liu, Y. Wang, and C. Liu, "A Deep- Learning Method Using Auto-encoder and Generative Adversarial Network for Anomaly Detection on Ancient Stone Stele Surfaces," arXiv preprint arXiv:2308.04426, 2023. [Online].
DOI:
https://arxiv.org/abs/2308.04426(arxiv.org)
K. Haydarov, A. Muhamed, X. Shen, J. Lazarevic, I. Skorokhodov, C. J. Galappaththige, and M. Elhoseiny,
“Adversarial Text to Continuous Image Generation,” in Proc. IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), 2024,
pp. 6316–6319. [Online].
DOI:https://kilichbek.github.io/webpage/hypercg an
D. Tang, X. Cao, X. Hou, Z. Jiang, J. Liu, and
D. Meng, “CRS-Diff: Controllable Remote Sensing Image Generation With Diffusion Model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 5638714, 2024. [Online]. DOI:https://ieeexplore.ieee.org/document/10365 855
M. Patel, C. Kim, S. Cheng, C. Baral, and Y. Yang, “ECLIPSE: A Resource-Efficient Text-to- Image Prior for Image Generations,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2024, pp. 9069–9071. [Online].
DOI: https://eclipse-t2i.vercel.app/
J. Yang, J. Feng, and H. Huang, “EmoGen: Emotional Image Content Generation with Text- to-Image Diffusion Models,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2024, pp. 6358–6360. [Online].
DOI: https://vcc.tech/research/2024/EmoGen
Refbacks
- There are currently no refbacks.