Open Access Open Access  Restricted Access Subscription Access

Study on Development of Geo-polymer concrete using Nano materials-A Review

Shivakrishnareddy Ibrahimpalli, Dr. K. Ramujee

Abstract


This review paper explores the dynamic area of Geo-polymer concrete research and development, with a particular emphasis on the incorporation of Nano materials like Nano clay and graphene oxide. Because of its longer lifespan and reduced impact on the environment, geo-polymer concrete is quickly becoming a popular substitute for conventional Portland cement-based concrete. Improving the mechanical properties, durability, and overall performance of geo-polymer concrete is the goal of adding Nano materials to its formulations. The use of Nano clay and graphene oxide as Nano additives offers a potential way to accomplish these goals. Geo-polymer concrete is strengthened by the addition of Nano materials, especially Nano clay and graphene oxide, which have a notable filling effect on composites. Their effects on geo-polymer paste, mortar, and concrete have been thoroughly studied, and for this study we have studied the research papers conducted from 2016 to 2013.and the results show that they improve geo-polymerization reactions and create denser matrices, which lead to longer lasting and more effective geo-polymer concrete. The necessity for improvements is highlighted by the practicality of geo-polymer composites, notwithstanding their environmental superiority. This paper takes a close look at the latest developments, methods, and results in geo-polymer concrete development, particularly as they pertain to the use of Nano clay and graphene oxide.


Full Text:

PDF

References


Amritphale, S. S., Mishra, D., Mudgal, M., Chouhan, R. K., & Chandra, N. (2016). A novel green approach for making hybrid inorganic- organic geopolymeric cementitious material utilizing fly ash and rice husk. Journal of Environmental Chemical Engineering, 4(4), 3856–3865. https://doi.org/10.1016/j.jece.2016.08.015

Arel, H. Ş., & Thomas, B. S. (2017). The effects of Nano- and micro-particle additives on the durability and mechanical properties of mortars exposed to internal and external sulfate attacks. Results in Physics, 7, 843–851. https://doi.org/10.1016/j.rinp.2017.02.009

Arpitha, B. J., & Parthasarathy, P. (2023). Effect of Nano-alumina and graphene oxide on the behavior of geopolymer composites: A state of the art of review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.708

Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2016). Effect of Nano-clay on mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies, 4(1), 19–28. https://doi.org/10.1016/j.jascer.2015.10.004

Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 73, 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z

Farzadnia, N., & Shi, C. (2023). Use of Nanomaterials in geopolymers. In Nanotechnology for Civil Infrastructure (pp. 161–190). Elsevier. https://doi.org/10.1016/B978-0-12-817832-4.00003-1

Gong, K., Pan, Z., Korayem, A. H., Qiu, L., Li, D., Collins, F., Wang, C. M., & Duan, W. H. (2015). Reinforcing Effects of Graphene Oxide on Portland Cement Paste. Journal of Materials in Civil Engineering, 27(2). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125

Gunasekara, C., Law, D. W., Setunge, S., & Sanjayan, J. G. (2015). Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Construction and Building Materials, 95, 592–599. https://doi.org/10.1016/j.conbuildmat.2015.07.175

Jyothi, T. K., Jitha, P. T., Pattaje, S. K., Jagadish, K. S., Ranganath, R. V., & Raghunath, S. (2019). Studies on the Strength Development of Lime–Pozzolana Cement–Soil–Brick Powder Based Geopolymer Composites. Journal of The Institution of Engineers (India): Series A, 100(2), 329–336. https://doi.org/10.1007/s40030-018-0350-3

Kim, J. H., Beacraft, M., & Shah, S. P. (2010). Effect of mineral admixtures on formwork pressure of self-consolidating concrete. Cement and Concrete Composites, 32(9), 665–671. https://doi.org/10.1016/j.cemconcomp.2010.07.018

Kishore, K. (2023). Geopolymer concrete and its strength influencing variables. Materials Today: Proceedings, 80, 1434–1441. https://doi.org/10.1016/j.matpr.2023.01.225

Kishore, K., & Gupta, N. (2020). Application of domestic & industrial waste materials in concrete: A review. Materials Today: Proceedings, 26, 2926–2931. https://doi.org/10.1016/j.matpr.2020.02.604

Kumar, M. M. M., & Yuvaraj, D. S. (2020). Behaviour of Different Nanomaterials in Geopolymer Concrete. International Journal of Innovative Technology and Exploring Engineering, 9(5), 605–611. https://doi.org/10.35940/ijitee.E2462.039520

Kumar, V., Kumar, A., Lee, D.-J., & Park, S.-S. (2021). Estimation of Number of Graphene Layers Using Different Methods: A Focused Review. Materials, 14(16), 4590. https://doi.org/10.3390/ma14164590

Lauermannová, A.-M., Lojka, M., Sklenka, J., Záleská, M., Pavlíková, M., Pivák, A., Pavlík, Z., & Jankovský, O. (2021). Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem, 29, 100284. https://doi.org/10.1016/j.flatc.2021.100284

Lavanya, G., & Jegan, J. (2015). Durability Study on High Calcium Fly Ash Based Geopolymer Concrete. Advances in Materials Science and Engineering, 2015, 1–7. https://doi.org/10.1155/2015/731056

Liu, C., Huang, X., Wu, Y.-Y., Deng, X., Liu, J., Zheng, Z., & Hui, D. (2020). Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnology Reviews, 9(1), 155–169. https://doi.org/10.1515/ntrev-2020-0014

Liu, X., Wu, Y., Li, M., Jiang, J., Guo, L., Wang, W., Zhang, W., Zhang, Z., & Duan, P. (2020). Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Construction and Building Materials, 247, 118544. https://doi.org/10.1016/j.conbuildmat.2020.118544

Mahboubi, B. (2019). Evaluation of Durability Behavior of Geopolymer Concrete Containing Nano-Silica and Nano-Clay Additives in Acidic Media. Journal of Civil Engineering and Materials Application, 3(3), 163–171. https://doi.org/10.22034/jcema.2019.95839

Meric, I., Han, M. Y., Young, A. F., Ozyilmaz, B., Kim, P., & Shepard, K. L. (2008). Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 3(11), 654–659. https://doi.org/10.1038/nNano.2008.268

Nanografi. (2019). Nanoclay: Properties, Production, Applications. Nanografi. https://Nanografi.com/blog/Nanoclay-properties-production-applications/

Naskar, S., & Chakraborty, A. K. (2016). Effect of Nano materials in geopolymer concrete. Perspectives in Science, 8, 273–275. https://doi.org/10.1016/j.pisc.2016.04.049

Nguyen, T. T., Goodier, C. I., & Austin, S. A. (2020). Factors affecting the slump and strength development of geopolymer concrete. Construction and Building Materials, 261, 119945. https://doi.org/10.1016/j.conbuildmat.2020.119945

Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084

Rashad, A. M. (2019). Effect of Nanoparticles on the properties of geopolymer materials. Magazine of Concrete Research, 71(24), 1283–1301. https://doi.org/10.1680/jmacr.18.00289

Ravitheja, A., & Kumar, N. L. N. K. (2019). A study on the effect of Nano clay and GGBS on the strength properties of fly ash based geopolymers. Materials Today: Proceedings, 19, 273–276. https://doi.org/10.1016/j.matpr.2019.06.761

Rümmeli, M. H., Rocha, C. G., Ortmann, F., Ibrahim, I., Sevincli, H., Börrnert, F., Kunstmann, J., Bachmatiuk, A., Pötschke, M., Shiraishi, M., Meyyappan, M., Büchner, B., Roche, S., & Cuniberti, G. (2011). Graphene: Piecing it Together. Advanced Materials, 23(39), 4471–4490. https://doi.org/10.1002/adma.201101855

Samuvel Raj, R., Prince Arulraj, G., Anand, N., Kanagaraj, B., Lubloy, E., & Naser, M. Z. (2023). Nanomaterials in geopolymer composites: A review. Developments in the Built Environment, 13, 100114. https://doi.org/10.1016/j.dibe.2022.100114

Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y.-J., Odkhuu, D., Tsogbadrakh, N., Lee, H.-B.-R., & Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Advances, 7(23), 13979–13984. https://doi.org/10.1039/C7RA00114B

susanna lauren. (2023). What is graphene oxide? Biolinscientific. https://www.biolinscientific.com/blog/what-is-graphene-oxide

Tang, S., Hu, Y., Ren, W., Yu, P., Huang, Q., Qi, X., Li, Y., & Chen, E. (2019). Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the micro-scale. Construction and Building Materials, 204, 684–690. https://doi.org/10.1016/j.conbuildmat.2019.01.232

Topçu, İ. B., Toprak, M. U., & Uygunoğlu, T. (2014). Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. Journal of Cleaner Production, 81, 211–217. https://doi.org/10.1016/j.jclepro.2014.06.037

Vyas, C. M. (2013). Concept of Green Concrete Using Construction Demolished Waste As Recycled Coarse Aggregate. International Journal of Engineering Trends and Technology (IJETT), 4(7), 3160–3165.

Xu, Z., Huang, Z., Liu, C., Deng, H., Deng, X., Hui, D., Zhang, X., & Bai, Z. (2021). Research progress on key problems of Nanomaterials-modified geopolymer concrete. Nanotechnology Reviews, 10(1), 779–792. https://doi.org/10.1515/ntrev-2021-0056

Yang, G., Li, L., Lee, W. B., & Ng, M. C. (2018). Structure of graphene and its disorders: a review. Science and Technology of Advanced Materials, 19(1), 613–648. https://doi.org/10.1080/14686996.2018.1494493

Zaid, O., Abdulwahid Hamah Sor, N., Martínez-García, R., de Prado-Gil, J., Mohamed Elhadi, K., & Yosri, A. M. (2023). Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different Nanomaterials: A systematic review. Ain Shams Engineering Journal, 102373. https://doi.org/10.1016/j.asej.2023.102373


Refbacks

  • There are currently no refbacks.