

A VGG16-Based Deep Learning System for Accurate Detection of Breast Cancer in Histopathology Images
Abstract
This study presents a deep learning-based system for detecting breast cancer in histopathology images. Utilizing a VGG16-based convolutional neural network and the Breast Histopathology Images dataset from Kaggle, we developed a model that distinguishes between cancerous and non-cancerous tissue. Our system achieved 93% accuracy in cancer detection. Key features include heatmap generation for visual explanation and efficient processing of whole-slide images. The model's integration with existing laboratory workflows positions it as a valuable tool for assisting pathologists. This research contributes to the application of AI in cancer diagnosis, potentially enhancing the efficiency and accuracy of breast cancer detection. Future work will focus on clinical validation and capability expansion.
References
World Health Organization. (2021). Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
Bejnordi, B. E., Veta, M., van Diest, P. J., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J. A. W. M., & the CAMELYON16 Consortium. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199-2210. https://doi.org/10.1001/jama.2017.14585
Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., & Campilho, A. (2017). Classification of breast cancer histology images using Convolutional Neural Networks. PLOS ONE, 12(6), e0177544. https://doi.org/10.1371/journal.pone.0177544
Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). Breast cancer histopathological image classification using Convolutional Neural Networks. 2016 International Joint Conference on Neural Networks (IJCNN), 2560-2567. https://doi.org/10.1109/IJCNN.2016.7727519
Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 (pp. 411-418). Springer Berlin Heidelberg.
Khan, A. M., Sirinukunwattana, K., & Rajpoot, N. (2015). A Global Covariance Descriptor for Nuclear Atypia Scoring in Breast Histopathology Images. IEEE Journal of Biomedical and Health Informatics, 19(5), 1637-1647. https://doi.org/10.1109/JBHI.2015.2447008
Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7, 29. https://doi.org/10.4103/2153-3539.186902
Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., & Saltz, J. H. (2016). Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2424-2433. https://doi.org/10.1109/CVPR.2016.266
Bayramoglu, N., Kannala, J., & Heikkilä, J. (2016). Deep learning for magnification independent breast cancer histopathology image classification. 2016 23rd International Conference on Pattern Recognition (ICPR), 2440-2445. https://doi.org/10.1109/ICPR.2016.7899995
Refbacks
- There are currently no refbacks.