

Survey Paper on Smart Homes: AI-Enabled Unified Environmental Safety System
Abstract
References
Rui, p., & Marques, G; Ferreira, B.R. Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 2017, 41, 23.
Krayden A.; Schohet M.; Shmueli O.; Shlenkevitch D.; Blank T.; Stolyarova S.; Nemirovsky Y. CMOS-MEMS Gas Sensor Dubbed GMOS for Selective Analysis of Gases with Tiny Edge Machine Learning. Eng. Proc. 2022, 27, 81.
Sreevas, R., Shanmughasundaram, R.; Vadali,V.S. Development of an IoT based air quality monitoring system.Int. j. innov. Technol. Explor. Eng. 2019,8.
Omidvarborna, H.; Kumar, p.; Hayward, j.; Gupta M; Nascimento, E.G.S. Low-cost air quality sensing towards smart homes. Atmosphere 2021,12,453.
Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun.Surv. Tutor. 2017, 19, 2322–2358.
Zhao, Y.; Haddadi, H.; Barnaghi, P. Edge Intelligence for Connected In-home Healthcare: Challenges and visions.
David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite micro: Embedded machine learning for tinyml systems.
Turner, M., & Harris, B. (Year). "User Experience Evaluation of Indoor Navigation Systems for the Visually Impaired." International Journal of Human-Computer Interaction,
Lewis, G., et al. Deep Learning Approaches for Real-time Object Detection in Indoor Environments. IEEE Transactions on Neural Networks and Learning Systems,
XBee datasheet by Digi International, Inc. All rights reserved"www.digi.com
Refbacks
- There are currently no refbacks.