

Non-destructive testing in civil engineering
Abstract
References
IS 13311-1 (1992): Method of Non Destructive testing of concrete, Part 1: Ultrasonic pulse velocity [CED 2: Cement and Concrete]
https://en.wikipedia.org/wiki/Nondestructive_testing
https://doi.org/10.1155/2013/834572 (Journal of Construction Engineering, Volume 2013, Article ID 834572)
https://www.researchgate.net/publication/282938427_Non-Destructive_Testing_of_Concrete_A_Review_of_Methods (January 2015 Electronic Journal of Structural Engineering 14(1):97-105)
Advances and Researches on Non-Destructive Testing: A Review (January 2018, 5(2):3690-3698 ) [ https://www.researchgate.net/publication/323989118_Advances_and_Researches_on_Non_Destructive_Testing_A_Review ]
https://www.ndt.net/article/v06n05/rhazi/rhazi.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804297/
http://www.wermac.org/others/others_img/mpi.gif
https://www.researchgate.net/publication/31715409_Applied_Materials_Science_Applications_of_Engineering_Materials_in_Structural_Electronics_Thermal_and_Other_Industries_DDL_Chung/figures?lo=1
http://www.academia.edu/Documents/in/NDT
https://www.researchgate.net/profile/Marco_Togni/publication/262876034_NDT_on_large_ancient_timber_beams_assessment_of_the_strengthstiffness_properties_combining_visual_and_instrumental_methods/links/0a85e5390e1cbcecdf000000.pdf
https://en.wikipedia.org/wiki/Ultrasonic_testing
https://www.bindt.org/What-is-NDT/Magnetic-particle-inspection-MPI/
http://www.wermac.org/others/ndt_rt.html
https://en.wikipedia.org/wiki/Industrial_radiography
https://www.sciencedirect.com/topics/engineering/acoustic-emission-testing
https://en.wikipedia.org/wiki/Acoustic_emission
https://www.nde-ed.org/EducationResources/CommunityCollege/Other%20Methods/AE/AE_Intro.php
https://eis.hu.edu.jo/ACUploads/10526/Liquid%20Penetrant%20Testing.pdf
https://en.wikipedia.org/wiki/Dye_penetrant_inspection
.Schabowicz K. Modern acoustic techniques for testing concrete structures accessible from one side only. Arch. Civ. Mech. Eng. 2015;15:1149–1159. doi: 10.1016/j.acme.2014.10.001.
2.Hoła J., Schabowicz K. State-of-the-art non-destructive methods for diagnostic testing of building structures—Anticipated development trends. Arch. Civ. Mech. Eng. 2010;10:5–18. doi: 10.1016/S1644-9665(12)60133-2.
3.Hoła J., Schabowicz K. Non-destructive diagnostics for building structures: Survey of selected state-of-the-art methods with application examples; Proceedings of the 56th Scientific Conference of PAN Civil Engineering Committee and PZITB Science Committee; Krynica, Poland. 19–24 September 2010; (In Polish)
4.Schabowicz K., Gorzelańczyk T. Fabrication of fibre cement boards. In: Ranachowski Z., Schabowicz K., editors. The Fabrication, Testing and Application of Fibre Cement Boards. 1st ed. Cambridge Scholars Publishing; Newcastle upon Tyne, UK: 2018. pp. 7–39.
5.Drelich R., Gorzelanczyk T., Pakuła M., Schabowicz K. Automated control of cellulose fiber cement boards with a non-contact ultrasound scanner. Autom. Constr. 2015;57:55–63. doi: 10.1016/j.autcon.2015.04.017.
6.Chady T., Schabowicz K., Szymków M. Automated multisource electromagnetic inspection of fibre-cement boards. Autom. Constr. 2018;94:383–394. doi: 10.1016/j.autcon.2018.07.018.
7.Schabowicz K., Jóźwiak-Niedźwiedzka D., Ranachowski Z., Kudela S., Dvorak T. Microstructural characterization of cellulose fibres in reinforced cement boards. Arch. Civ. Mech. Eng. 2018;4:1068–1078. doi: 10.1016/j.acme.2018.01.018.
8.Schabowicz K., Gorzelańczyk T., Szymków M. Identification of the degree of fibre-cement boards degradation under the influence of high temperature. Autom. Constr. 2019;101:190–198. doi: 10.1016/j.autcon.2019.01.021.
9.Schabowicz K., Gorzelańczyk T. A non-destructive methodology for the testing of fibre cement boards by means of a non-contact ultrasound scanner. Constr. Build. Mater. 2016;102:200–207. doi: 10.1016/j.conbuildmat.2015.10.170.
10.Schabowicz K., Ranachowski Z., Jóźwiak-Niedźwiedzka D., Radzik Ł., Kudela S., Dvorak T. Application of X-ray microtomography to quality assessment of fibre cement boards. Constr. Build. Mater. 2016;110:182–188. doi: 10.1016/j.conbuildmat.2016.02.035.
11.Ranachowski Z., Schabowicz K. The contribution of fibre reinforcement system to the overall toughness of cellulose fibre concrete panels. Constr. Build. Mater. 2017;156:1028–1034. doi: 10.1016/j.conbuildmat.2017.09.067.
12.Rucka M., Wilde K. Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 2013;32:372–383. doi: 10.1007/s10921-013-0191-y.
13.Rucka M., Wilde K. Ultrasound monitoring for evaluation of damage in reinforced concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2015;63:65–75. doi: 10.1515/bpasts-2015-0008.
14.EN 12467—Cellulose Fibre Cement Flat Sheets. [(accessed on 15 September 2019)];2018 Product Specification and Test Methods. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:66671,6110&cs=1151E39EDCD9EF75E3C2D401EB5818ACD.
15.Zielińska M., Rucka M. Non-Destructive Assessment of Masonry Pillars Using Ultrasonic Tomography. Materials. 2018;11:2543. doi: 10.3390/ma11122543.
16.Jasiński R., Drobiec Ł., Mazur W. Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete. Materials. 2019;12:389. doi: 10.3390/ma12030389.
17.Juraszek J. Residual Magnetic Field Non-Destructive Testing of Gantry Cranes. Materials. 2019;12:564. doi: 10.3390/ma12040564.
18.Schabowicz K., Gorzelańczyk T., Szymków M. Identification of the degree of degradation of fibre-cement boards exposed to fire by means of the acoustic emission method and artificial neural networks. Materials. 2019;12:656. doi: 10.3390/ma12040656.
19.Noszczyk P., Nowak H. Inverse Contrast in Non-Destructive Materials Research by Using Active Thermography. Materials. 2019;12:835. doi: 10.3390/ma12050835.
20.Ranachowski Z., Ranachowski P., Dębowski T., Gorzelańczyk T., Schabowicz K. Investigation of structural degradation of fiber cement boards due to thermal impact. Materials. 2019;12:944. doi: 10.3390/ma12060944.
21.Michałek J., Pachnicz M., Sobótka M. Application of Nanoindentation and 2D and 3D Imaging to Characterise Selected Features of the Internal Microstructure of Spun Concrete. Materials. 2019;12:1016. doi: 10.3390/ma12071016.
22.Yang Q., Wang C., Li N., Wang W., Liu Y. Enhanced Singular Value Truncation Method for Non-Destructive Evaluation of Structural Damage Using Natural Frequencies. Materials. 2019;12:1021. doi: 10.3390/ma12071021.
23.Drobiec Ł., Jasiński R., Mazur W. Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection. Materials. 2019;12:1168. doi: 10.3390/ma12071168.
24.Ziolkowski P., Niedostatkiewicz M. Machine Learning Techniques in Concrete Mix Design. Materials. 2019;12:1256. doi: 10.3390/ma12081256.
25.Nowak T., Karolak A., Sobótka M., Wyjadłowski M. Assessment of the Condition of Wharf Timber Sheet Wall Material by Means of Selected Non-Destructive Methods. Materials. 2019;12:1532. doi: 10.3390/ma12091532.
26.Doušová B., Koloušek D., Lhotka M., Keppert M., Urbanová M., Kobera L., Brus J. Waste Brick Dust as Potential Sorbent of Lead and Cesium from Contaminated Water. Materials. 2019;12:1647. doi: 10.3390/ma12101647.
27.Wojtczak E., Rucka M. Wave Frequency Effects on Damage Imaging in Adhesive Joints Using Lamb Waves and RMS. Materials. 2019;12:1842. doi: 10.3390/ma12111842.
28.Maj M., Ubysz A., Hammadeh H., Askifi F. Non-Destructive Testing of Technical Conditions of RC Industrial Tall Chimneys Subjected to High Temperature. Materials. 2019;12:2027. doi: 10.3390/ma12122027.
29.Mackiewicz P., Szydło A. Viscoelastic Parameters of Asphalt Mixtures Identified in Static and Dynamic Tests. Materials. 2019;12:2084. doi: 10.3390/ma12132084.
30.Krampikowska A., Pała R., Dzioba I., Świt G. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo Steel. Materials. 2019;12:2140. doi: 10.3390/ma12132140.
31.Grębowski K., Rucka M., Wilde K. Non-Destructive Testing of a Sport Tribune under Synchronized Crowd-Induced Excitation Using Vibration Analysis. Materials. 2019;12:2148. doi: 10.3390/ma12132148.
32.Michałek J. Variation in Compressive Strength of Concrete aross Thickness of Placed Layer. Materials. 2019;12:2162. doi: 10.3390/ma12132162.
33.Gorzelańczyk T., Schabowicz K. Effect of Freeze–Thaw Cycling on the Failure of Fibre-Cement Boards, Assessed Using Acoustic Emission Method and Artificial Neural Network. Materials. 2019;12:2181. doi: 10.3390/ma12132181.
34.Wang X., Peng Y., Wang J., Zeng Q. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-ray Computed Tomography. Materials. 2019;12:2220. doi: 10.3390/ma12142220.
35.Logoń D. Identification of the destruction process in quasi brittle concrete with dispersed fibres based on acoustic emission and sound spectrum. Materials. 2019;12:2266. doi: 10.3390/ma12142266.
36.Slávik R., Čekon M., Štefaňák J. A Nondestructive Indirect Approach to Long-Term Wood Moisture Monitoring Based on Electrical Methods. Materials. 2019;12:2373. doi: 10.3390/ma12152373.
37.Gorzelańczyk T., Pachnicz M., Różański A., Schabowicz K. Multi-Scale Structural Assessment of Cellulose Fibres Cement Boards Subjected to High Temperature Treatment. Materials. 2019;12:2449. doi: 10.3390/ma12152449.
38.Stawiski B., Kania T. Examining the distribution of strength across the thickness of reinforced concrete elements subject to sulphate corrosion using the ultrasonic method. Materials. 2019;12:2519. doi: 10.3390/ma12162519.
39.Kocáb D., Misák P., Cikrle P. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test. Materials. 2019;12:2705. doi: 10.3390/ma12172705.
Refbacks
- There are currently no refbacks.