Open Access Open Access  Restricted Access Subscription Access

Non-destructive testing in civil engineering

Shaktisinh dineshsinh gohil, gondaliya arpit j

Abstract


This study aims to showcase recent advancements in the field of non-destructive testing (NDT) of materials in civil engineering. The highlighted research addresses various aspects of NDT applications, spanning from individual building materials to entire structural systems. Current trends in NDT development primarily focus on the detection of flaws and defects in concrete elements and structures, with acoustic methods dominating this area. Similar to medical applications, the emphasis lies in developing testing equipment capable of providing detailed insights into the internal condition of materials and structural components. The findings presented contribute valuable knowledge to building practices and highlight significant implications for the field.

Full Text:

PDF

References


IS 13311-1 (1992): Method of Non Destructive testing of concrete, Part 1: Ultrasonic pulse velocity [CED 2: Cement and Concrete]

https://en.wikipedia.org/wiki/Nondestructive_testing

https://doi.org/10.1155/2013/834572 (Journal of Construction Engineering, Volume 2013, Article ID 834572)

https://www.researchgate.net/publication/282938427_Non-Destructive_Testing_of_Concrete_A_Review_of_Methods (January 2015 Electronic Journal of Structural Engineering 14(1):97-105)

Advances and Researches on Non-Destructive Testing: A Review (January 2018, 5(2):3690-3698 ) [ https://www.researchgate.net/publication/323989118_Advances_and_Researches_on_Non_Destructive_Testing_A_Review ]

https://www.ndt.net/article/v06n05/rhazi/rhazi.htm

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804297/

http://www.wermac.org/others/others_img/mpi.gif

https://www.researchgate.net/publication/31715409_Applied_Materials_Science_Applications_of_Engineering_Materials_in_Structural_Electronics_Thermal_and_Other_Industries_DDL_Chung/figures?lo=1

http://www.academia.edu/Documents/in/NDT

https://www.researchgate.net/profile/Marco_Togni/publication/262876034_NDT_on_large_ancient_timber_beams_assessment_of_the_strengthstiffness_properties_combining_visual_and_instrumental_methods/links/0a85e5390e1cbcecdf000000.pdf

https://en.wikipedia.org/wiki/Ultrasonic_testing

https://www.bindt.org/What-is-NDT/Magnetic-particle-inspection-MPI/

http://www.wermac.org/others/ndt_rt.html

https://en.wikipedia.org/wiki/Industrial_radiography

https://www.sciencedirect.com/topics/engineering/acoustic-emission-testing

https://en.wikipedia.org/wiki/Acoustic_emission

https://www.nde-ed.org/EducationResources/CommunityCollege/Other%20Methods/AE/AE_Intro.php

https://eis.hu.edu.jo/ACUploads/10526/Liquid%20Penetrant%20Testing.pdf

https://en.wikipedia.org/wiki/Dye_penetrant_inspection

.Schabowicz K. Modern acoustic techniques for testing concrete structures accessible from one side only. Arch. Civ. Mech. Eng. 2015;15:1149–1159. doi: 10.1016/j.acme.2014.10.001.

2.Hoła J., Schabowicz K. State-of-the-art non-destructive methods for diagnostic testing of building structures—Anticipated development trends. Arch. Civ. Mech. Eng. 2010;10:5–18. doi: 10.1016/S1644-9665(12)60133-2.

3.Hoła J., Schabowicz K. Non-destructive diagnostics for building structures: Survey of selected state-of-the-art methods with application examples; Proceedings of the 56th Scientific Conference of PAN Civil Engineering Committee and PZITB Science Committee; Krynica, Poland. 19–24 September 2010; (In Polish)

4.Schabowicz K., Gorzelańczyk T. Fabrication of fibre cement boards. In: Ranachowski Z., Schabowicz K., editors. The Fabrication, Testing and Application of Fibre Cement Boards. 1st ed. Cambridge Scholars Publishing; Newcastle upon Tyne, UK: 2018. pp. 7–39.

5.Drelich R., Gorzelanczyk T., Pakuła M., Schabowicz K. Automated control of cellulose fiber cement boards with a non-contact ultrasound scanner. Autom. Constr. 2015;57:55–63. doi: 10.1016/j.autcon.2015.04.017.

6.Chady T., Schabowicz K., Szymków M. Automated multisource electromagnetic inspection of fibre-cement boards. Autom. Constr. 2018;94:383–394. doi: 10.1016/j.autcon.2018.07.018.

7.Schabowicz K., Jóźwiak-Niedźwiedzka D., Ranachowski Z., Kudela S., Dvorak T. Microstructural characterization of cellulose fibres in reinforced cement boards. Arch. Civ. Mech. Eng. 2018;4:1068–1078. doi: 10.1016/j.acme.2018.01.018.

8.Schabowicz K., Gorzelańczyk T., Szymków M. Identification of the degree of fibre-cement boards degradation under the influence of high temperature. Autom. Constr. 2019;101:190–198. doi: 10.1016/j.autcon.2019.01.021.

9.Schabowicz K., Gorzelańczyk T. A non-destructive methodology for the testing of fibre cement boards by means of a non-contact ultrasound scanner. Constr. Build. Mater. 2016;102:200–207. doi: 10.1016/j.conbuildmat.2015.10.170.

10.Schabowicz K., Ranachowski Z., Jóźwiak-Niedźwiedzka D., Radzik Ł., Kudela S., Dvorak T. Application of X-ray microtomography to quality assessment of fibre cement boards. Constr. Build. Mater. 2016;110:182–188. doi: 10.1016/j.conbuildmat.2016.02.035.

11.Ranachowski Z., Schabowicz K. The contribution of fibre reinforcement system to the overall toughness of cellulose fibre concrete panels. Constr. Build. Mater. 2017;156:1028–1034. doi: 10.1016/j.conbuildmat.2017.09.067.

12.Rucka M., Wilde K. Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 2013;32:372–383. doi: 10.1007/s10921-013-0191-y.

13.Rucka M., Wilde K. Ultrasound monitoring for evaluation of damage in reinforced concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2015;63:65–75. doi: 10.1515/bpasts-2015-0008.

14.EN 12467—Cellulose Fibre Cement Flat Sheets. [(accessed on 15 September 2019)];2018 Product Specification and Test Methods. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:66671,6110&cs=1151E39EDCD9EF75E3C2D401EB5818ACD.

15.Zielińska M., Rucka M. Non-Destructive Assessment of Masonry Pillars Using Ultrasonic Tomography. Materials. 2018;11:2543. doi: 10.3390/ma11122543.

16.Jasiński R., Drobiec Ł., Mazur W. Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete. Materials. 2019;12:389. doi: 10.3390/ma12030389.

17.Juraszek J. Residual Magnetic Field Non-Destructive Testing of Gantry Cranes. Materials. 2019;12:564. doi: 10.3390/ma12040564.

18.Schabowicz K., Gorzelańczyk T., Szymków M. Identification of the degree of degradation of fibre-cement boards exposed to fire by means of the acoustic emission method and artificial neural networks. Materials. 2019;12:656. doi: 10.3390/ma12040656.

19.Noszczyk P., Nowak H. Inverse Contrast in Non-Destructive Materials Research by Using Active Thermography. Materials. 2019;12:835. doi: 10.3390/ma12050835.

20.Ranachowski Z., Ranachowski P., Dębowski T., Gorzelańczyk T., Schabowicz K. Investigation of structural degradation of fiber cement boards due to thermal impact. Materials. 2019;12:944. doi: 10.3390/ma12060944.

21.Michałek J., Pachnicz M., Sobótka M. Application of Nanoindentation and 2D and 3D Imaging to Characterise Selected Features of the Internal Microstructure of Spun Concrete. Materials. 2019;12:1016. doi: 10.3390/ma12071016.

22.Yang Q., Wang C., Li N., Wang W., Liu Y. Enhanced Singular Value Truncation Method for Non-Destructive Evaluation of Structural Damage Using Natural Frequencies. Materials. 2019;12:1021. doi: 10.3390/ma12071021.

23.Drobiec Ł., Jasiński R., Mazur W. Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection. Materials. 2019;12:1168. doi: 10.3390/ma12071168.

24.Ziolkowski P., Niedostatkiewicz M. Machine Learning Techniques in Concrete Mix Design. Materials. 2019;12:1256. doi: 10.3390/ma12081256.

25.Nowak T., Karolak A., Sobótka M., Wyjadłowski M. Assessment of the Condition of Wharf Timber Sheet Wall Material by Means of Selected Non-Destructive Methods. Materials. 2019;12:1532. doi: 10.3390/ma12091532.

26.Doušová B., Koloušek D., Lhotka M., Keppert M., Urbanová M., Kobera L., Brus J. Waste Brick Dust as Potential Sorbent of Lead and Cesium from Contaminated Water. Materials. 2019;12:1647. doi: 10.3390/ma12101647.

27.Wojtczak E., Rucka M. Wave Frequency Effects on Damage Imaging in Adhesive Joints Using Lamb Waves and RMS. Materials. 2019;12:1842. doi: 10.3390/ma12111842.

28.Maj M., Ubysz A., Hammadeh H., Askifi F. Non-Destructive Testing of Technical Conditions of RC Industrial Tall Chimneys Subjected to High Temperature. Materials. 2019;12:2027. doi: 10.3390/ma12122027.

29.Mackiewicz P., Szydło A. Viscoelastic Parameters of Asphalt Mixtures Identified in Static and Dynamic Tests. Materials. 2019;12:2084. doi: 10.3390/ma12132084.

30.Krampikowska A., Pała R., Dzioba I., Świt G. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo Steel. Materials. 2019;12:2140. doi: 10.3390/ma12132140.

31.Grębowski K., Rucka M., Wilde K. Non-Destructive Testing of a Sport Tribune under Synchronized Crowd-Induced Excitation Using Vibration Analysis. Materials. 2019;12:2148. doi: 10.3390/ma12132148.

32.Michałek J. Variation in Compressive Strength of Concrete aross Thickness of Placed Layer. Materials. 2019;12:2162. doi: 10.3390/ma12132162.

33.Gorzelańczyk T., Schabowicz K. Effect of Freeze–Thaw Cycling on the Failure of Fibre-Cement Boards, Assessed Using Acoustic Emission Method and Artificial Neural Network. Materials. 2019;12:2181. doi: 10.3390/ma12132181.

34.Wang X., Peng Y., Wang J., Zeng Q. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-ray Computed Tomography. Materials. 2019;12:2220. doi: 10.3390/ma12142220.

35.Logoń D. Identification of the destruction process in quasi brittle concrete with dispersed fibres based on acoustic emission and sound spectrum. Materials. 2019;12:2266. doi: 10.3390/ma12142266.

36.Slávik R., Čekon M., Štefaňák J. A Nondestructive Indirect Approach to Long-Term Wood Moisture Monitoring Based on Electrical Methods. Materials. 2019;12:2373. doi: 10.3390/ma12152373.

37.Gorzelańczyk T., Pachnicz M., Różański A., Schabowicz K. Multi-Scale Structural Assessment of Cellulose Fibres Cement Boards Subjected to High Temperature Treatment. Materials. 2019;12:2449. doi: 10.3390/ma12152449.

38.Stawiski B., Kania T. Examining the distribution of strength across the thickness of reinforced concrete elements subject to sulphate corrosion using the ultrasonic method. Materials. 2019;12:2519. doi: 10.3390/ma12162519.

39.Kocáb D., Misák P., Cikrle P. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test. Materials. 2019;12:2705. doi: 10.3390/ma12172705.


Refbacks

  • There are currently no refbacks.