Open Access Open Access  Restricted Access Subscription Access

Mechanism of Action of Anti-Parkinsons Disease, Side Effects of Dopamine Agonists, MAO- Inhibitors, COMT Inhibitors, Mechanism of Action as Well as Side Effects of Anti Cholinergics and Amantidine

Dr. Muralinath. E, Vaikunta Rao .V, Manjari . P, Sravani Pragna . K, Kalyan .C, Vinayasree . C, Guru Prasad . M, Venkat Naveen .A, Sravani . K

Abstract


Levadopa plays a role in treating Parkinson’s disease. Levadopa and carbidopa play a major in relieving the major symptoms of the condition namely tremors, rigidity and bradykinesia. An activation of dopamine receptors enhance motor control and decrease symptoms regarding low dopamine levels in the brain. The drugs of dopamine agonists include apomorphine, bromocriptine, pramipexole and Ropinirole. Mechanism of MAO-B inhibitors is to inhibit the enzyme MAO-B which breakdown dopamine particularly in the brain. Mechanism of action of COMT inhibitors to stop the activity of COMT, which is essential for breaking down certain neurotransmitters namely dopamine and nor epinephrine in the brain. Low levels of acetyl choline lead to the occurrence of relaxation of smooth muscles, decreased glandular secretions and reduced nerve impulses. Anticholionergics are involved regarding treatment of medical conditions along with treating over active bladder, motion sickness and certain respiratory conditions. Drugs of anti cholinergics include Benztropine and Tri hexy phenidyl. Finally it is concluded that Amantidine plays a major role as anti viral and is also involved in treating Parkinsons disease.


Full Text:

PDF

References


Angot, E., & Brundin, P. (2009). Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson's disease. Parkinsonism & related disorders, 15, S143-S147.

Appel‐Cresswell, S., Rajput, A. H., Sossi, V., Thompson, C., Silva, V., McKenzie, J., ... & Rajput, A. (2014). Clinical, positron emission tomography, and pathological studies of DNAJC13 p. N855S Parkinsonism. Movement Disorders, 29(13), 1684-1687.

Emond, P., Guilloteau, D., & Chalon, S. (2008). PE2I: a radiopharmaceutical for in vivo exploration of the dopamine transporter. CNS neuroscience & therapeutics, 14(1), 47-64.

Arshad, A. R., Sulaiman, S. A., Saperi, A. A., Jamal, R., Mohamed Ibrahim, N., & Abdul Murad, N. A. (2017). MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. Frontiers in molecular neuroscience, 10, 352.

Bach, A. W., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., ... & Shih, J. C. (1988). cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences, 85(13), 4934-4938.

Bartus, R. T., Baumann, T. L., Siffert, J., Herzog, C. D., Alterman, R., Boulis, N., ... & Olanow, C. W. (2013). Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology, 80(18), 1698-1701.

Bartus, R. T., Weinberg, M. S., & Samulski, R. J. (2014). Parkinson's disease gene therapy: success by design meets failure by efficacy. Molecular Therapy, 22(3), 487-497.

Bentea, E., Verbruggen, L., & Massie, A. (2017). The proteasome inhibition model of Parkinson’s disease. Journal of Parkinson's disease, 7(1), 31-63.

Berendse, H. W., Booij, J., Francot, C. M., Bergmans, P. L., Hijman, R., Stoof, J. C., & Wolters, E. C. (2001). Subclinical dopaminergic dysfunction in asymptomatic Parkinson's disease patients' relatives with a decreased sense of smell. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 50(1), 34-41.

Bernis, M. E., Babila, J. T., Breid, S., Wüsten, K. A., Wüllner, U., & Tamgüney, G. (2015). Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta neuropathologica communications, 3, 1-18.

Blandini, F., Sinforiani, E., Pacchetti, C., Samuele, A., Bazzini, E., Zangaglia, R., ... & Martignoni, E. (2006). Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology, 66(4), 529-534.

Bohnen, N. I., Albm, R. L., Koeppe, R. A., Wernette, K. A., Kilbourn, M. R., Minoshima, S., & Frey, K. A. (2006). Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. Journal of Cerebral Blood Flow & Metabolism, 26(9), 1198-1212.

Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A., Steur, E. N. J., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging, 24(2), 197-211.

Brewer Jr, H. B., Fairwell, T., Kay, L., Meng, M., Ronan, R., Law, S., & Light, J. A. (1983). Human plasma proapoA-I: isolation and amino-terminal sequence. Biochemical and Biophysical Research Communications, 113(2), 626-632.

Brieger, K., Schiavone, S., Miller Jr, F. J., & Krause, K. H. (2012). Reactive oxygen species: from health to disease. Swiss medical weekly, 142(3334), w13659-w13659.

Bronstein, J. M., Tagliati, M., Alterman, R. L., Lozano, A. M., Volkmann, J., Stefani, A., ... & DeLong, M. R. (2011). Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Archives of neurology, 68(2), 165-165.

Brooks, D. J. (2016). Molecular imaging of dopamine transporters. Ageing research reviews, 30, 114-121.

Buervenich, S., Carmine, A., Galter, D., Shahabi, H. N., Johnels, B., Holmberg, B., ... & Olson, L. (2005). A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. Archives of neurology, 62(1), 74-78.

Buervenich, S., Sydow, O., Carmine, A., Zhang, Z., Anvret, M., & Olson, L. (2000). Alcohol dehydrogenase alleles in Parkinson's disease. Movement disorders, 15(5), 813-818.

Burke, W. J. (2003). 3, 4-dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson's disease. Current Drug Targets-CNS & Neurological Disorders, 2(2), 143-148.

Caronti, B., Antonini, G., Calderaro, C., Ruggieri, S., Palladini, G., Pontieri, F. E., & Colosimo, C. (2001). Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson's disease. Journal of neural transmission, 108, 803-807.

Charles, P., Camuzat, A., Benammar, N., Sellal, F., Destee, A., Bonnet, A. M., ... & French Parkinson's Disease Genetic Study Group. (2007). Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism?. Neurology, 69(21), 1970-1975.

Chartier-Harlin, M. C., Dachsel, J. C., Vilariño-Güell, C., Lincoln, S. J., Leprêtre, F., Hulihan, M. M., ... & Farrer, M. J. (2011). Translation initiator EIF4G1 mutations in familial Parkinson disease. The American Journal of Human Genetics, 89(3), 398-406.

Chuang, Y. H., Paul, K. C., Bronstein, J. M., Bordelon, Y., Horvath, S., & Ritz, B. (2017). Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome medicine, 9, 1-12.

Chung, E. J., Kim, E. G., Bae, J. S., Eun, C. K., Lee, K. S., Oh, M., & Kim, S. J. (2009). Journal of Movement Disorders. Journal of Movement Disorders, 2(2), 64-68.

Ciechanover, A., & Kwon, Y. T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Experimental & molecular medicine, 47(3), e147-e147.

Clairembault, T., Kamphuis, W., Leclair‐Visonneau, L., Rolli‐Derkinderen, M., Coron, E., Neunlist, M., ... & Derkinderen, P. (2014). Enteric GFAP expression and phosphorylation in Parkinson's disease. Journal of neurochemistry, 130(6), 805-815.

Coune, P. G., Schneider, B. L., & Aebischer, P. (2012). Parkinson’s disease: gene therapies. Cold Spring Harbor perspectives in medicine, 2(4).

Das, G., Misra, A. K., Das, S. K., Ray, K., & Ray, J. (2009). Microtubule-associated protein tau (MAPT) influences the risk of Parkinson's disease among Indians. Neuroscience letters, 460(1), 16-20.

De Deurwaerdère, P., Di Giovanni, G., & Millan, M. J. (2017). Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Progress in neurobiology, 151, 57-100.

Dos Santos, M. C. T., Barreto-Sanz, M. A., Correia, B. R. S., Bell, R., Widnall, C., Perez, L. T., ... & da Costa, A. N. (2018). miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget, 9(25), 17455.

Double, K. L., & Halliday, G. M. (2006). New face of neuromelanin. Journal of neural transmission supplementum, 70, 119.

El‐Agnaf, O. M., Salem, S. A., Paleologou, K. E., Curran, M. D., Gibson, M. J., Court, J. A., ... & Allsop, D. (2006). Detection of oligomeric forms of α‐synuclein protein in human plasma as a potential biomarker for Parkinson's disease. The FASEB journal, 20(3), 419-425.

Elbaz, A., & Tranchant, C. (2007). Epidemiologic studies of environmental exposures in Parkinson's disease. Journal of the neurological sciences, 262(1-2), 37-44.

Emamzadeh, F. N. (2016). Alpha-synuclein structure, functions, and interactions. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 21.

Emamzadeh, F. N. (2017). Role of apolipoproteins and α-synuclein in Parkinson’s disease. Journal of Molecular Neuroscience, 62(3-4), 344-355.

Estupinan, D., Nathoo, S., & Okun, M. S. (2013). The demise of Poskanzer and Schwab’s influenza theory on the pathogenesis of Parkinson’s disease. Parkinson’s Disease, 2013.

Fazio, P., Svenningsson, P., Forsberg, A., Jönsson, E. G., Amini, N., Nakao, R., ... & Varrone, A. (2015). Quantitative analysis of 18F-(E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane binding to the dopamine transporter in Parkinson disease. Journal of Nuclear Medicine, 56(5), 714-720.

Feng, Y., Jankovic, J., & Wu, Y. C. (2015). Epigenetic mechanisms in Parkinson's disease. Journal of the neurological sciences, 349(1-2), 3-9.


Refbacks

  • There are currently no refbacks.