Open Access Open Access  Restricted Access Subscription Access

Understanding Ocular Toxicity: A Closer Look at Drug-Induced Eye Damage

Muralinath E., Jayinder Paul Singh G., Panjan Ghosh P., Kalyan C., Archana Jain, Guruprasad M.

Abstract


Let us explain about the causes, manifestations and preventive measures associated with ocular to ocular toxicity due to drugs some drugs consist of components that show toxicity particularly to the delicate structures of the eye. This can include preservatives, stabilizers or other additives. An administration of drugs in systematic manner can reach the eyes through the loodstream via oral or intravenous routes. The eyes sensitive tissues may react in an adverse manner to the presence of these drugs. Ocular medications such as eye drops or ointment can lead to toxicity without the proper regulation of careful dosage. Over use of corticosteroids eye drops can result in an enhanced intra ocular pressure, createng glaucoma. Additionally, cataract formation may be enhanced. A very few anti-malarial drugs have been linked to retinal toxicity, potentially forming visual disturbances or even permanent loss. Only a small number of antibiotics, particularly those in the aminoglycoside class, have the potential to be toxic, especially to the optic nerve, which can lead to vision impairment. Blurred vision can leaf to the damage regarding g cornea, lens or retina. Ocular toxicity frequently presents with irritation, itching and redness because of inflammation. Enhanced sensitivity to light may happen. Indications potential damage particularly to the retina or other light sensitive structures. Finally it is concluded that ocular toxicity due to drugs us a complex and multifaceted issue.


Full Text:

PDF

References


Delli, K., Spijkervet, F. K., Kroese, F. G., Bootsma, H., & Vissink, A. (2014). Xerostomia. Saliva: Secretion and Functions, 24, 109-125.

Davies, A. N., & Thompson, J. (2015). Parasympathomimetic drugs for the treatment of salivary gland dysfunction due to radiotherapy. Cochrane Database of Systematic Reviews, (10).

Carlson, A. B., & Kraus, G. P. (2018). Physiology, cholinergic receptors.

Pronin, A. N., Wang, Q., & Slepak, V. Z. (2017). Teaching an old drug new tricks: Agonism, antagonism, and biased signaling of pilocarpine through M3 muscarinic acetylcholine receptor. Molecular pharmacology, 92(5), 601-612.

Tanasiewicz, M., Hildebrandt, T., & Obersztyn, I. (2016). Xerostomia of various etiologies: A review of the literature. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 25(1), 199-206.

Pakala, R. S., Brown, K. N., & Preuss, C. V. (2019). Cholinergic medications.

Infeld, D. A., & O'Shea, J. G. (1998). Glaucoma: diagnosis and management. Postgraduate medical journal, 74(878), 709-715.

Prum, B. E., Lim, M. C., Mansberger, S. L., Stein, J. D., Moroi, S. E., Gedde, S. J., ... & Williams, R. D. (2016). Primary open-angle glaucoma suspect preferred practice pattern® guidelines. Ophthalmology, 123(1), P112-P151.

Mahabadi, N., Foris, L. A., & Tripathy, K. (2017). Open angle glaucoma.

Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The lancet, 363(9422), 1711-1720.

Pandey, A. V., Babbarwal, V. K., Okoyeh, J. N., Joshi, R. M., Puri, S. K., Singh, R. L., & Chauhan, V. S. (2003). Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. Biochemical and biophysical research communications, 308(4), 736-743.

Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptors. Annual review of immunology, 21(1), 335-376.

Ugwuegbu, O., Uchida, A., Singh, R. P., Beven, L., Hu, M., Kaiser, S., ... & Ehlers, J. P. (2019). Quantitative assessment of outer retinal layers and ellipsoid zone mapping in hydroxychloroquine retinopathy. British Journal of Ophthalmology, 103(1), 3-7.

Kalia, S., & Dutz, J. P. (2007). New concepts in antimalarial use and mode of action in dermatology. Dermatologic therapy, 20(4), 160-174.

Rainsford, K. D., Parke, A. L., Clifford-Rashotte, M., & Kean, W. F. (2015). Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 23, 231-269.

Ullberg, S., Lindquist, N. G., & Sjöstrand, S. E. (1970). Accumulation of chorio-retinotoxic drugs in the foetal eye. Nature, 227(5264), 1257-1258.

Durcan, L., Clarke, W. A., Magder, L. S., & Petri, M. (2015). Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. The Journal of Rheumatology, 42(11), 2092-2097.

Golden, E. B., Cho, H. Y., Hofman, F. M., Louie, S. G., Schönthal, A. H., & Chen, T. C. (2015). Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurgical focus, 38(3), E12.

Castrejón, I., Tani, C., Jolly, M., Huang, A., & Mosca, M. (2014). Indices to assess patients with systemic lupus erythematosus in clinical trials, long-term observational studies, and clinical care. Clin Exp Rheumatol, 32(5 Suppl 85), 85-95.

Gossec, L., Molto, A., Romand, X., Puyraimond-Zemmour, D., Lavielle, M., Beauvais, C., ... & Dougados, M. (2019). Recommendations for the assessment and optimization of adherence to disease-modifying drugs in chronic inflammatory rheumatic diseases: A process based on literature reviews and expert consensus. Joint Bone Spine, 86(1), 13-19.

Wang, C., Fortin, P. R., Li, Y., Panaritis, T., Gans, M., & Esdaile, J. M. (1999). Discontinuation of antimalarial drugs in systemic lupus erythematosus. The Journal of Rheumatology, 26(4), 808-815.

Dosso, A., & Rungger-Brändle, E. (2007). In vivo confocal microscopy in hydroxychloroquine-induced keratopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 245, 318-320.

Yusuf, I. H., Sharma, S., Luqmani, R., & Downes, S. M. (2017). Hydroxychloroquine retinopathy. Eye, 31(6), 828-845.

Kellner, U., Renner, A. B., & Tillack, H. (2006). Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Investigative ophthalmology & visual science, 47(8), 3531-3538.

Marmor, M. F., Kellner, U., Lai, T. Y., Lyons, J. S., & Mieler, W. F. (2011). Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology, 118(2), 415-422.

Marmor, M. F., Kellner, U., Lai, T. Y., Melles, R. B., & Mieler, W. F. (2016). Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 123(6), 1386-1394.

Jorge, A. M., Melles, R. B., Zhang, Y., Lu, N., Rai, S. K., Young, L. H., ... & Choi, H. (2018). Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines. Arthritis research & therapy, 20, 1-8.

Scalzi, L. V., Hollenbeak, C. S., Mascuilli, E., & Olsen, N. (2018). Improvement of medication adherence in adolescents and young adults with SLE using web-based education with and without a social media intervention, a pilot study. Pediatric Rheumatology, 16, 1-10.

Salu, P., Uvijls, A., Van Den Brande, P., & Leroy, B. P. (2010). Normalization of generalized retinal function and progression of maculopathy after cessation of therapy in a case of severe hydroxychloroquine retinopathy with 19 years follow-up. Documenta ophthalmologica, 120, 251-264.

Raizman, M. B., Hamrah, P., Holland, E. J., Kim, T., Mah, F. S., Rapuano, C. J., & Ulrich, R. G. (2017). Drug-induced corneal epithelial changes. Survey of ophthalmology, 62(3), 286-301.31.

Samiy, N. (2008). Ocular features of Fabry disease: diagnosis of a treatable life-threatening disorder. Survey of ophthalmology, 53(4), 416-423.

Loh, A., Hadziahmetovic, M., & Dunaief, J. L. (2009). Iron homeostasis and eye disease. Biochimica et Biophysica Acta (BBA)-General Subjects, 1790(7), 637-649.


Refbacks

  • There are currently no refbacks.