Open Access Open Access  Restricted Access Subscription Access

Growth and Structural Characterization of CuWO4 Crystals by Flux Growth Method

Sandip Unadkat, G. K. Solanki

Abstract


This paper represents the investigation on the growth of CuWO4 (Copper Tungstate) crystals by flux growth technique. After growing the crystals the structural characterization is done by X-ray Diffraction (XRD) to find out lattice parameters, unit cell volume, X-ray density as well as particle size. Stoichiometry of grown crystal is confirmed by Energy Dispersive Analysis of X-rays (EDAX).

 

Keywords: Flux growth, copper tungstate, structural characterization

 


Full Text:

PDF

References


Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). Anomalous high-pressure Jahn-Teller behavior in CuWO 4. Physical review letters, 108(16), 166402.

Kihlberg, L. & Gerbert, E. (1970) Acta. Cryst., 26. 1020.

Kihlberg, L. & Gerbert, E. (1967) Chem. Scand., 21, 2575.

Dorfman, L. P., Houck, D. L., Scheithauer, M. J., & Frisk, T. A. (2002). Synthesis and hydrogen reduction of tungsten–copper composite oxides. Journal of materials research, 17(4), 821-830.

Kobayashi, M., Usuki, Y., Ishii, M., Itoh, M., & Nikl, M. (2005). Further study on different dopings into PbWO4 single crystals to increase the scintillation light yield. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 540(2-3), 381-394.

Mikhailik, V. B., & Kraus, H. (2006). Cryogenic scintillators in searches for extremely rare events. Journal of Physics D: Applied Physics, 39(6), 1181.

Bonino, F., Di Pietro, B., Rivolta, B., & Scrosati, B. (1978). Lithium copper molybdate and lithium—copper Tungstate organic solvent batteries. Journal of Power Sources, 2(3), 265-272.

Fujita, M., Itoh, M., Katagiri, T., Iri, D., Kitaura, M., & Mikhailik, V. B. (2008). Optical anisotropy and electronic structures of Cd Mo O 4 and Cd W O 4 crystals: Polarized reflection measurements, x-ray photoelectron spectroscopy, and electronic structure calculations. Physical Review B, 77(15), 155118.

Anders, A. G., Zvyagin, A. I., Kobets, M. I., & Pelikh, L. N. (1972). Khats, ko, EN; Yurko, VG. Zh. Éksp. Teor. Fiz, 62, 1798-1802.

Lalić, M. V., Popović, Z. S., & Vukajlović, F. R. (2011). Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate. Computational Materials Science, 50(3), 1179-1186.

Van Uitert, L. G., & Preziosi, S. (1962). Zinc tungstates for microwave maser applications. Journal of Applied Physics, 33(9), 2908-2909.

Gillette, R. H. (1950). Calcium and Cadmium Tungstate as Scintillation Counter Crystals for Gamma‐Ray Detection. Review of Scientific Instruments, 21(4), 294-301.

Peter, M. (1959). Millimeter-Wave Paramagnetic Resonance Spectrum of S 6 State Impurity (Fe+++) in MgW O 4. Physical Review, 113(3), 801.

Patel, A. R., & Bhat, H. L. (1971). Growth of barite group crystals by the flux evaporation method. Journal of Crystal Growth, 11(2), 166-170.

Patel, A. R., & Arora, S. K. (1973). Gel growth of single crystals of barium and strontium tungstates. Journal of Crystal Growth, 18(2), 199-201.

Unadkat, S. R. (2012). Growth and characterization of Mixed Germanium Sulphoselenide (GeSxSe1x) single crystals by Chemical Vapour Transport Technique.


Refbacks

  • There are currently no refbacks.