

Detection of Hidden Processes Caused by Volatile Kernel Rootkits in Cloud Environments
Abstract
References
Tian D., et al. (2021). MDCHD: Malware detection in cloud using hardware trace and deep learning. Computer Networks, 198, 108394. DOI: 10.1016/j.comnet.2021.108394.
Moon S., et al. (2017). Kernel rootkit attack prevention using bus snooping. IEEE TDSC, 14(2), 145–157. DOI: 10.1109/TDSC.2015.2443803.
Zhou H., et al. (2022). Detecting kernel rootkits in virtualized infrastructure. IEEE ICECE, 244–247. DOI: 10.1109/ICECE56287.2022.10048623.
Krishnamurthy P., et al. (2019). Stealthy rootkits in smart grid controllers. IEEE ICCD, 20–28. DOI: 10.1109/ICCD46524.2019.00012.
Xing X., et al. (2022). Malware detection using autoencoder. IEEE Access, 10, 25696–25706. DOI: 10.1109/ACCESS.2022.3155695.
Kuzminykh I., Yevdokymenko M. (2019). Security analysis of rootkit detection. IEEE ATIT, 196–199. DOI: 10.1109/ATIT49449.2019.9030428.
Alaeiyan M., et al. (2019). Context-based malware behavior classification. Computer Communications, 136, 76–90. DOI: 10.1016/j.comcom.2019.01.003.
Xiao J., et al. (2016). HyperLink: VM introspection without kernel source. IEEE ICAC, 127–136. DOI: 10.1109/ICAC.2016.46.
Verma S.K., et al. (2021). iSIMP with MD5-based integrity validation. IEEE ComPE, 94–97. DOI: 10.1109/ComPE53109.2021.9752433.
Alshamrani S.S. (2022). ML-based malware classification in PDFs. Security and Communication Networks. DOI: 10.1155/2022/7611741.
Refbacks
- There are currently no refbacks.