

Aspects of Cervix Disease
Abstract
Cervix is the lower part of the uterus where a baby enhances in size especially during pregnancy. A Pap test can determine changes in cervix cells along with cervical cancer. Other issues include cervicitis (inflammation), cervical incompetence (premature widening during pregnancy), and cervical polyps/cysts (abnormal growths).
References
Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/canjclin.55.2.74
Muñoz, N., Bosch, F. X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K. V., et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. New England Journal of Medicine, 348(6), 518–527. https://doi.org/10.1056/NEJMoa021641
Wheeler, C. M. (2007). Advances in primary and secondary interventions for cervical cancer: Human papillomavirus prophylactic vaccines and testing. Nature Clinical Practice Oncology, 4(4), 224–235. https://doi.org/10.1038/ncponc0770
Roden, R., & Wu, T. C. (2006). How will HPV vaccines affect cervical cancer? Nature Reviews Cancer, 6(10), 753–763. https://doi.org/10.1038/nrc1973
zur Hausen, H. (2002). Papillomaviruses and cancer: From basic studies to clinical application. Nature Reviews Cancer, 2(5), 342–350. https://doi.org/10.1038/nrc798
Ho, G. Y., Bierman, R., Beardsley, L., Chang, C. J., & Burk, R. D. (1998). Natural history of cervicovaginal papillomavirus infection in young women. New England Journal of Medicine, 338(7), 423–428. https://doi.org/10.1056/NEJM199802123380703
Magnusson, P. K., Lichtenstein, P., & Gyllensten, U. B. (2000). Heritability of cervical tumours. International Journal of Cancer, 88(5), 698–701. https://doi.org/10.1002/1097-0215(20001201)88:5<698::aid-ijc3>3.0.co;2-j
Tjalma, W. A., Arbyn, M., Paavonen, J., van Waes, T. R., & Bogers, J. J. (2004). Prophylactic human papillomavirus vaccines: The beginning of the end of cervical cancer. International Journal of Gynecological Cancer, 14(4), 751–761. https://doi.org/10.1111/j.1048-891X.2004.014505.x
Hazelbag, S., Fleuren, G. J., Baelde, J. J., Schuuring, E., Kenter, G. G., & Gorter, A. (2001). Cytokine profile of cervical cancer cells. Gynecologic Oncology, 83(2), 235–243. https://doi.org/10.1006/gyno.2001.6378
Behbakht, K., Friedman, J., Heimler, I., Aroutcheva, A., Simoes, J., & Faro, S. (2002). Role of the vaginal microbiological ecosystem and cytokine profile in the promotion of cervical dysplasia: A case-control study. Infectious Diseases in Obstetrics and Gynecology, 10(4), 181–186. https://doi.org/10.1155/S1064744902000200
Tjiong, M. Y., van der Vange, N., ter Schegget, J. S., Burger, M. P., ten Kate, F. W., & Out, T. A. (2001). Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine, 14(6), 357–360. https://doi.org/10.1006/cyto.2001.0909
Qian, N., Chen, X., Han, S., Qiang, F., Jin, G., Zhou, X., et al. (2010). Circulating IL-1beta levels, polymorphisms of IL-1B, and risk of cervical cancer in Chinese women. Journal of Cancer Research and Clinical Oncology, 136(5), 709–716. https://doi.org/10.1007/s00432-009-0710-5
Hwang, I. R., Kodama, T., Kikuchi, S., Sakai, K., Peterson, L. E., Graham, D. Y., et al. (2002). Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology, 123(6), 1793–1803. https://doi.org/10.1053/gast.2002.37043
Singh, H., Sachan, R., Goel, H., & Mittal, B. (2008). Genetic variants of interleukin-1RN and interleukin-1beta genes and risk of cervical cancer. BJOG: An International Journal of Obstetrics & Gynaecology, 115(5), 633–638. https://doi.org/10.1111/j.1471-0528.2007.01655.x
Kang, S., Kim, J. W., Park, N. H., Song, Y. S., Park, S. Y., Kang, S. B., et al. (2007). Interleukin-1 beta-511 polymorphism and risk of cervical cancer. Journal of Korean Medical Science, 22(1), 110–113. https://doi.org/10.3346/jkms.2007.22.1.110
Malejczyk, J., Malejczyk, M., Köck, A., Urbanski, A., Majewski, S., Hunzelmann, N., et al. (1992). Autocrine growth limitation of human papillomavirus type 16-harboring keratinocytes by constitutively released tumor necrosis factor-alpha. Journal of Immunology, 149(6), 2702–2708.
Bequet-Romero, M., & López-Ocejo, O. (2000). Angiogenesis modulators expression in culture cell lines positives for HPV-16 oncoproteins. Biochemical and Biophysical Research Communications, 277(1), 55–61. https://doi.org/10.1006/bbrc.2000.3628
Basile, J. R., Zacny, V., & Münger, K. (2001). The cytokines tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. Journal of Biological Chemistry, 276(25), 22522–22528. https://doi.org/10.1074/jbc.M010505200
Vieira, K. B., Goldstein, D. J., & Villa, L. L. (1996). Tumor necrosis factor alpha interferes with the cell cycle of normal and papillomavirus-immortalized human keratinocytes. Cancer Research, 56(11), 2452–2457.
Kyo, S., Inoue, M., Hayasaka, N., Inoue, T., Yutsudo, M., Tanizawa, O., et al. (1994). Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology, 200(1), 130–139. https://doi.org/10.1006/viro.1994.1171
Refbacks
- There are currently no refbacks.