Open Access Open Access  Restricted Access Subscription Access

Specific Parameters of Physiology of Fetal Hemoglobin Include Cellular Level, Development, Patho Physiology and Clincal Sigificance

Srinivas G., Ramanjaneyulu D.V., Muralinath E., Guruprasad M., Sravani Pragna K., Manjari P., Sony Sharlet E., T. Nikhil, V.Yaswanth Sai, D. Kusuma Latha, R. Faith Rani, P. Megha Varna

Abstract


Fetal hemoglobin (HbF) is the dominant form of hemoglobin present in the fetus particularly during gestation. The production of HbF takes place by erythroid precursor cells from 10 to 12 weeks of pregnancy through the first six months of postnatal life. HbF consisats of two alpha and two gamma subunits, while the major form of adult hemoglobin, hemoglobin A (HbA), consists of two alpha and two beta subunits. The genes that express gamma chain proteins are observed in the beta chain locus on chromosome 11. The gamma subunit contradicts from its adult counterpart in that it consists of either an alanine or a glycine at position 136, both of which are neutral, nonpolar amino acids. This difference establishes conformational changes to the protein that gives rise to several physiological differences regarding oxygen delivery that are essential in fetal circulation.


Full Text:

PDF

References


Fossen Johnson, S. (2019). Methemoglobinemia: Infants at risk. Current Problems in Pediatric and Adolescent Health Care, 49(3), 57-67. https://doi.org/10.1016/j.cppeds.2019.03.001

Ansari, S. H., Lassi, Z. S., Khowaja, S. M., Adil, S. O., & Shamsi, T. S. (2019). Hydroxyurea (hydroxycarbamide) for transfusion-dependent β-thalassaemia. Cochrane Database of Systematic Reviews, 2019(3), CD012064. https://doi.org/10.1002/14651858.CD012064.pub2

Janbek, J., Sarki, M., Specht, I. O., & Heitmann, B. L. (2019). A systematic literature review of the relation between iron status/anemia in pregnancy and offspring neurodevelopment. European Journal of Clinical Nutrition, 73(12), 1561-1578. https://doi.org/10.1038/s41430-019-0350-6

Piccin, A., Murphy, C., Eakins, E., Rondinelli, M. B., Daves, M., Vecchiato, C., Wolf, D., McMahon, C., & Smith, O. P. (2019). Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. European Journal of Haematology, 102(4), 319-330. https://doi.org/10.1111/ejh.13260

Wienert, B., Martyn, G. E., Funnell, A. P. W., Quinlan, K. G. R., & Crossley, M. (2018). Wake-up Sleepy Gene: Reactivating fetal globin for β-hemoglobinopathies. Trends in Genetics, 34(12), 927-940. https://doi.org/10.1016/j.tig.2018.09.002

Zivot, A., Lipton, J. M., Narla, A., & Blanc, L. (2018). Erythropoiesis: Insights into pathophysiology and treatments in 2017. Molecular Medicine, 24(1), 11. https://doi.org/10.1186/s10020-018-1006-z

Hardison, R. C. (2012). Evolution of hemoglobin and its genes. Cold Spring Harbor Perspectives in Medicine, 2(12), a011627. https://doi.org/10.1101/cshperspect.a011627

Ogur, G., Gül, D., Ozen, S., Imirzalioglu, N., Cankus, G., Tunca, Y., Bahçe, M., Güran, S., & Baser, I. (1997). Application of the 'Apt test' in prenatal diagnosis to evaluate the fetal origin of blood obtained by cordocentesis: Results of 30 pregnancies. Prenatal Diagnosis, 17(9), 879-882. https://doi.org/10.1002/(SICI)1097-0223(199709)17:9<879::AID-PD713>3.0.CO;2-M

Sepulveda, W., Be, C., Youlton, R., Gutierrez, J., & Carstens, E. (1999). Accuracy of the haemoglobin alkaline denaturation test for detecting maternal blood contamination of fetal blood samples for prenatal karyotyping. Prenatal Diagnosis, 19(10), 927-929. https://doi.org/10.1002/(SICI)1097-0223(199910)19:10<927::AID-PD711>3.0.CO;2-J

Karafin, M. S., Glisch, C., Souers, R. J., Hudgins, J., Park, Y. A., Ramsey, G. E., Lockhart, E., & Pagano, M. B. (2019). Use of fetal hemoglobin quantitation for Rh-positive pregnant females: A national survey and review of the literature. Archives of Pathology & Laboratory Medicine, 143(12), 1539-1544. https://doi.org/10.5858/arpa.2018-0324-RA

Ghiaccio, V., Chappell, M., Rivella, S., & Breda, L. (2019). Gene therapy for beta-hemoglobinopathies: Milestones, new therapies, and challenges. Molecular Diagnosis & Therapy, 23(2), 173-186. https://doi.org/10.1007/s40291-019-0381-7

Esrick, E. B., & Bauer, D. E. (2018). Genetic therapies for sickle cell disease. Seminars in Hematology, 55(2), 76-86. https://doi.org/10.1053/j.seminhematol.2018.03.003

Asadov, C., Alimirzoeva, Z., Mammadova, T., Aliyeva, G., Gafarova, S., & Mammadov, J. (2018). β-Thalassemia intermedia: A comprehensive overview and novel approaches. International Journal of Hematology, 108(1), 5-21. https://doi.org/10.1007/s12185-018-2416-6

Zaidi, A. U., & Heeney, M. M. (2018). A scientific renaissance: Novel drugs in sickle cell disease. Pediatric Clinics of North America, 65(3), 445-464. https://doi.org/10.1016/j.pcl.2018.03.002

Brawley, O. W., Cornelius, L. J., Edwards, L. R., Gamble, V. N., Green, B. L., Inturrisi, C., James, A. H., Laraque, D., Mendez, M., Montoya, C. J., Pollock, B. H., Robinson, L., Scholnik, A. P., & Schori, M. (2008). National Institutes of Health Consensus Development Conference statement: Hydroxyurea treatment for sickle cell disease. Annals of Internal Medicine, 148(12), 932-938. https://doi.org/10.7326/0003-4819-148-12-200806170-00008


Refbacks

  • There are currently no refbacks.