

Child Predator Detection in Online Chat Conversation using Support Vector Machine
Abstract
References
Fauzi, M. A., & Bours, P. (2020, April). Ensemble Method for Sexual Predators Identification in Online Chats. In 2020 8th International Workshop on Biometrics and Forensics (IWBF) (pp. 1-6). IEEE.
Ashcroft, M., Kaati, L., & Meyer, M. (2015, September). A Step Towards Detecting Online Grooming--Identifying Adults Pretending to be Children. In 2015 European Intelligence and Security Informatics Conference (pp. 98-104). IEEE.
Altay, E. V., & Alatas, B. (2018, December). Detection of cyberbullying in social networks using machine learning methods. In 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT) (pp. 87-91). IEEE.
Cano, A. E., Fernandez, M., & Alani, H. (2014, November). Detecting child grooming behaviour patterns on social media. In International conference on social informatics (pp. 412-427). Springer, Cham.
Haidar, B., Chamoun, M., & Yamout, F. (2016, November). Cyberbullying detection: A survey on multilingual techniques. In 2016 European Modelling Symposium (EMS) (pp. 165-171). IEEE.
Rodríguez, J. I., Durán, S. R., Díaz-López, D., Pastor-Galindo, J., & Mármol, F. G. (2020). C3-sex: A conversational agent to detect online sex offenders. Electronics, 9(11), 1779.
Dombrowski, S. C., LeMasney, J. W., Ahia, C. E., & Dickson, S. A. (2004). Protecting children from online sexual predators: technological, psychoeducational, and legal considerations. Professional Psychology: Research and Practice, 35(1), 65.
Wolak, J., Finkelhor, D., Mitchell, K. J., & Ybarra, M. L. (2010). Online “predators” and their victims: Myths, realities, and implications for prevention and treatment.
Cano, A. E., Fernandez, M., & Alani, H. (2014, November). Detecting child grooming behaviour patterns on social media. In International conference on social informatics (pp. 412-427). Springer, Cham.
Lee, H. E., Ermakova, T., Ververis, V., & Fabian, B. (2020). Detecting child sexual abuse material: A comprehensive survey. Forensic Science International: Digital Investigation, 34, 301022.
Refbacks
- There are currently no refbacks.