

Execution of a Remark Rating Framework in light of Wilson's Score Span for Binomial Extents
Abstract
References
Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22(158), 209-212.
Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119-126.
Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter. Journal of the American Statistical Association, 74(368), 894-900.
Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 236(767), 333-380.
Blyth, C. R., & Still, H. A. (1983). Binomial confidence intervals. Journal of the American Statistical Association, 78(381), 108-116.
Böhning, D. (1994). Better approximate confidence intervals for a binomial parameter. Canadian Journal of Statistics, 22(2), 207-218.
Chen, H. (1990). The accuracy of approximate intervals for a binomial parameter. Journal of the American Statistical Association, 85(410), 514-518.
Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4), 404-413.
Duffy, D. E., & Santner, T. J. (1987). Confidence intervals for a binomial parameter based on multistage tests. Biometrics, 81-93.
Leemis, L. M., & Trivedi, K. S. (1996). A comparison of approximate interval estimators for the Bernoulli parameter. The American Statistician, 50(1), 63-68.
Sahabo, L., & Yi, S. (2019). Normally approximated Bayesian credible interval of binomial proportion. Journal of the Korean Data & Information Science Society, 30(1), 233-244.
Refbacks
- There are currently no refbacks.