

Exploring Endothelial Progenitor Cells (EPCs): Key Players in Vascular Development
Abstract
Endothelial progenitor cells play an important role in vascular development, repair as well as regeneration. These cells, e hi it remarkable abilities to contribute to the formation and maintenance of blood vessels throughout the body. The derivation of EPCs takes from hemopoietic stem cells especially in the bone marrow. They are manifested by their capacity to differentiate particularly into mature Endothelial cells, the building blocks of blood vessels. Additionally , EPCs exhibit unique surface markers namely CD 34. CD 133 and vascular endothelial growth factor receptor 2 ( VEGFR_2 ) which distinguish them from other cell types. During embryogenesis, EPCs show the participation in angiogenesis, the process of new blood vessel formation. They migrate to sites of vascular injury or ischemua, where they migrate into existing vessels or contribute to the formation of new capillaries. This process is responsible for tissue repair and regeneration, particularly on response to conditions namely myocardial infarction or stroke. The mobilization of EPCs from the bone marrow into circulation is regulated in a tight manner by many factors such as cytokines, growth factors and chemokines. A very few factors such as hypoxia and physical exercise have been shown to enhance EP mobilization highlighting the complex regulatory mechanisms involved. Finally it is concluded that endothelial progenitor cells represent a promising Venue for promoting vascular development and repair.
References
Dhamodharan, U., Karan, A., Sireesh, D., Vaishnavi, A., Somasundar, A., Rajesh, K., & Ramkumar, K. M. (2019). Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy. Free Radical Biology and Medicine, 138, 53-62. [PubMed]
Yu, M., Yuan, H. S., Li, Q., Li, Q., & Teng, Y. F. (2019). Combination of cell-based therapy with apelin-13 and hyperbaric oxygen efficiently promotes neovascularization in an ischemic animal model. European Review for Medical and Pharmacological Sciences, 23(6), 2630-2639. [PubMed]
An, H., Lee, J. T., Oh, S. E., Park, K. M., Hu, K. S., Kim, S., & Chung, M. K. (2019). Adjunctive hyperbaric oxygen therapy for irradiated rat calvarial defects. Journal of Periodontal & Implant Science, 49(1), 2-13. [PMC free article] [PubMed]
Hatibie, M. J., Islam, A. A., Hatta, M., Moenadjat, Y., Susilo, R. H., & Rendy, L. (2019). Hyperbaric oxygen therapy for second-degree burn healing: An experimental study in rabbits. Advances in Skin & Wound Care, 32(3), 1-4. [PMC free article] [PubMed]
Chen, W., Liang, X., Nong, Z., Li, Y., Pan, X., Chen, C., & Huang, L. (2019). The multiple applications and possible mechanisms of hyperbaric oxygenation therapy. Medicinal Chemistry, 15(5), 459-471. [PubMed]
Lin, P. Y., Sung, P. H., Chung, S. Y., Hsu, S. L., Chung, W. J., Sheu, J. J., ... & Yip, H. K. (2018). Hyperbaric oxygen therapy enhanced circulating levels of endothelial progenitor cells and angiogenesis biomarkers, and blood flow in ischemic areas in patients with peripheral arterial occlusive disease. Journal of Clinical Medicine, 7(12), Article 510. [PMC free article] [PubMed]
Melamed, Y. (2018). Hyperbaric oxygen therapy (HBO) for radiation necrosis: Physician awareness is required. Harefuah, 157(8), 517-519. [PubMed]
Peña-Villalobos, I., Casanova-Maldonado, I., Lois, P., Prieto, C., Pizarro, C., Lattus, J., ... & Palma, V. (2018). Hyperbaric oxygen increases stem cell proliferation, angiogenesis, and wound-healing ability of WJ-MSCs in diabetic mice. Frontiers in Physiology, 9, Article 995. [PMC free article] [PubMed]
Henderson, R., Reilly, D. A., & Cooper, J. S. (2018). Hyperbaric oxygen for ischemia due to injection of cosmetic fillers: Case report and issues. Plastic and Reconstructive Surgery – Global Open, 6(1), e1618. [PMC free article] [PubMed]
Hadanny, A., Lang, E., Copel, L., Meir, O., Bechor, Y., Fishlev, G., ... & Efrati, S. (2018). Hyperbaric oxygen can induce angiogenesis and recover erectile function. International Journal of Impotence Research, 30(6), 292-299. [PubMed]
Buboltz, J. B., Hendriksen, S., & Cooper, J. S. (2023). Hyperbaric soft tissue radionecrosis. In StatPearls [Internet]. StatPearls Publishing. Treasure Island, FL. [PubMed]
Fadini, G. P., Baesso, I., Albiero, M., Sartore, S., Agostini, C., & Avogaro, A. (2008). Technical notes on endothelial progenitor cells: Ways to escape from the knowledge plateau. Atherosclerosis, 197(2), 496-503. https://doi.org/10.1016/j.atherosclerosis.2007.12.039
Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9(6), 702-712. https://doi.org/10.1038/nm0603-702
Ward, M. R., Stewart, D. J., & Kutryk, M. J. (2007). Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: Current perspectives. Catheterization and Cardiovascular Interventions, 70(7), 983-998. https://doi.org/10.1002/ccd.21302
Sekiguchi, H., Ii, M., & Losordo, D. W. (2009). The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. Journal of Cell Physiology, 219(2), 235-242. https://doi.org/10.1002/jcp.21672
Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., ... & Amano, K. (2002). Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone-marrow cells: A pilot study and a randomized controlled trial. The Lancet, 360(9331), 427-435. https://doi.org/10.1016/S0140-6736(02)09670-8
Jung, K. H., & Roh, J. K. (2008). Circulating endothelial progenitor cells in cerebrovascular disease. Journal of Clinical Neurology, 4(4), 139-147. https://doi.org/10.3988/jcn.2008.4.4.139
Timmermans, F., Plum, J., Yoder, M. C., Ingram, D. A., Vandekerckhove, B., & Case, J. (2009). Endothelial progenitor cells: Identity defined? Journal of Cellular and Molecular Medicine, 13(1), 87-102. https://doi.org/10.1111/j.1582-4934.2008.00598.x
Barber, C. L., & Iruela-Arispe, M. L. (2006). The ever-elusive endothelial progenitor cell: Identities, functions and clinical implications. Pediatric Research, 59(4 Pt 2), 26R-32R. https://doi.org/10.1203/01.pdr.0000203553.46471.18
Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., ... & Ingram, D. A. (2007). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35(7), 1109-1118. https://doi.org/10.1016/j.exphem.2007.04.002
Van Craenenbroeck, E. M., Conraads, V. M., Van Bockstaele, D. R., Haine, S. E., Vermeulen, K., ... & Hoymans, V. Y. (2008). Quantification of circulating endothelial progenitor cells: A methodological comparison of six flow cytometric approaches. Journal of Immunological Methods, 332(1-2), 31-40. https://doi.org/10.1016/j.jim.2007.12.006
Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., ... & Oh, B. H. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288-293. https://doi.org/10.1161/01.ATV.0000114236.77009.06
Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., ... & Ingram, D. A. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principles. Blood, 109(5), 1801-1809.
Refbacks
- There are currently no refbacks.