

ARTIFICIAL INTELLIGENCE IN HEALTHCARE: ADVANCEMENTS IN KIDNEY DISEASE DIAGNOSIS AND MANAGEMENT
Abstract
References
Chan, L., Chaudhary, K., Saha, A., Chauhan, K., Vaid, A., Zhao, S., ... & Coca, S. G. (2019). Predicting acute kidney injury using deep learning algorithms in critically ill patients. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-10569-1
Gulshan, V., Rajan, R. P., Widner, K., Sundararajan, S., Jayadevan, R., Chodpathumwan, Y., ... & Corrado, G. S. (2020). Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmology, 138(7), 705–712. https://doi.org/10.1001/jamaophthalmol.2020.1301
Koyner, J. L., Carey, K. A., Edelson, D. P., & Churpek, M. M. (2018). The development of a machine learning inpatient acute kidney injury prediction model. Critical Care Medicine, 46(7), 1070-1077. https://doi.org/10.1097/CCM.0000000000003123
Tomašev, N., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., ... & Suleyman, M. (2019). A clinically applicable approach to continuous prediction of future acute kidney injury. Nature, 572(7767), 116–119. https://doi.org/10.1038/s41586-019-1390-1
Xu, X., Wang, H., Liu, Y., Wang, Y., Wang, M., & Qiu, M. (2021). AI in nephrology: Emerging applications and future directions. Kidney International Reports, 6(10), 2589-2597. https://doi.org/10.1016/j.ekir.2021.07.016
Mohamadlou, H., Lynn-Palevsky, A., Barton, C., Chettipally, U., Shieh, L., Calvert, J., ... & Das, R. (2018). Prediction of acute kidney injury with a machine learning algorithm using electronic health record data. Canadian Journal of Kidney Health and Disease, 5, 2054358118776326. https://doi.org/10.1177/2054358118776326
Suresh, H., & Guttag, J. V. (2021). A framework for understanding unintended consequences of machine learning. Communications of the ACM, 64(11), 62–71. https://doi.org/10.1145/3453326
Sharma, S., Wasson, S., & Srivastava, S. (2022). Role of artificial intelligence in early diagnosis of chronic kidney disease. Biomedical Signal Processing and Control, 71, 103187. https://doi.org/10.1016/j.bspc.2021.103187
Nadkarni, G. N., Coca, S. G., & Gharavi, A. G. (2022). Integrating artificial intelligence in nephrology: Rationale, opportunities, and challenges. Nature Reviews Nephrology, 18, 653–664. https://doi.org/10.1038/s41581-022-00597-1
Ravizza, S., De Momi, E., & Ferrigno, G. (2019). Artificial intelligence in nephrology: A comprehensive review. Artificial Intelligence in Medicine, 96, 12-21. https://doi.org/10.1016/j.artmed.2019.04.005
Refbacks
- There are currently no refbacks.